List of misnamed theorems

This is a list of misnamed theorems in mathematics. It includes theorems (and lemmas, corollaries, conjectures, laws, and perhaps even the odd object) that are well known in mathematics, but which are not named for the originator. That is, these items on this list illustrate Stigler's law of eponymy (which is not, of course, due to Stigler, who credits Merton).

See also

References

  1. ^ Newcomb, S. (1881). "Note on the frequency of use of the different digits in natural numbers". Amer. J. Math. (The Johns Hopkins University Press) 4 (1): 39–40. doi:10.2307/2369148. JSTOR 2369148. 
  2. ^ Benford, F. (1938). "The law of anomalous numbers". Proc. Amer. Phil. Soc. 78: 551–572. 
  3. ^ Hill, Theodore P. (April 1995). "The Significant Digit Phenomenon". Am. Math. Monthly (Mathematical Association of America) 102 (4): 322–327. doi:10.2307/2974952. JSTOR 2974952. 
  4. ^ Bix, Robert (1998). Conics and Cubics. Springer. ISBN 0-387-98401-1. 
  5. ^ Burnside, William (1897). Theory of groups of finite order. Cambridge University Press. 
  6. ^ Scott, Charlotte Agnas (March 1898). "On the Intersection of Plane Curves". Bull. Am. Math. Soc. 4 (6): 260–273. doi:10.1090/S0002-9904-1898-00489-5. 
  7. ^ Carl B. Boyer (1968). A History of Mathematics, 2nd edition. Wiley. p. 431. 
  8. ^ Deahna, F. (1840). "Über die Bedingungen der Integrabilität". J. Reine Angew. Math. 20: 340–350. 
  9. ^ Frobenius, Georg (1895). "Ūber das Pfaffsche Problem". J. Reine Angew. Math.: 230–315. 
  10. ^ a b Samelson, Hans (June-July 2001). "Differential Forms, the Early days; or the Stories of Deahna's Theorem and of Volterra's Theorem". Am. Math. Monthly (Mathematical Association of America) 108 (6): 552–530. doi:10.2307/2695706. JSTOR 2695706. 
  11. ^ Sundström, Manya Raman (2010). "A pedagogical history of compactness". arXiv:1006.4131v1 [math.HO]. 
  12. ^ Thomas & Finney. Calculus and Analytic Geometry. 
  13. ^ W.A. Beyer, J.D. Louck, and D. Zeilberger, A Generalization of a Curiosity that Feynman Remembered All His Life, Math. Mag. 69, 43-44, 1996.
  14. ^ Cajori, Florian (1999). A History of Mathematics. New York: Chelsea. ISBN 0-8284-0203-5.  (reprint of fifth edition, 1891).
  15. ^ Whitford, Edward Everett (1912). The Pell Equation. New York: E. E. Whitford.  This is Whitford's 1912 Ph.D. dissertation, written at Columbia University and published at his own expense in 1912.
  16. ^ Poincaré, H. (1886–1887). "Sur les residus des intégrales doubles". Acta Math. 9: 321–380. doi:10.1007/BF02406742. 
  17. ^ Redfield, J. H. (1927). "The theory of group related distributions". Amer. J. Math. (The Johns Hopkins University Press) 49 (3): 433–445. doi:10.2307/2370675. JSTOR 2370675. 
  18. ^ Pólya, G. (1936). "Algebraische Berechnung der Isomeren einiger organischer Verbindungen". Zeitschrift für Kristallographie A 93: 414. 
  19. ^ Read, R. C. (December 1987). "Pólya's Theorem and its Progeny". Mathematics Magazine 60 (5): 275–282. doi:10.2307/2690407. JSTOR 2690407. 
  20. ^ Victor J. Katz (May 1979). "The History of Stokes' Theorem". Mathematics Magazine 52 (3): 146–156. doi:10.2307/2690275. JSTOR 2690275. 
  21. ^ Campbell, Paul J. (1978). "The Origin of ‘Zorn's Lemma’". Historia Mathematica 5: 77–89. doi:10.1016/0315-0860(78)90136-2.